Brain Connectivity and Aging

نویسندگان

  • STEFANO PECA
  • CHERYL R. MCCREARY
  • ERIC E. SMITH
  • BRADLEY G. GOODYEAR
  • S. Peca
چکیده

here is growing evidence that in the aging process both the neural and the vascular aspects of brain function are affected. On the neural side, aging is associated with damage to the myelin sheaths and reduction in the total number of nerve fibers, resulting in a reduction in structural connectivity [1]. But connections in the brain are not only structural (i.e. synapses, axons, etc.); equally important are blood flow related (vascular) connections. This hypothesis arose after the first observation that blood flow increased and decreased simultaneously in the two motor regions in opposite brain hemispheres. We call regions such as these functionally connected. As we get older, so does our brain’s vascular system: the elasticity of small blood vessels in the brain diminishes in some persons [2] and white matter lesions of presumed vascular origin increase [3]. These vascular changes affect blood flow to neurons and thus may reduce functional connectivity. The extent to which these vascular-related phenomena contribute to age-related reductions in structural or functional connectivity (and perhaps to cognitive decline) is not yet clear.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brain Connectivity Reflected in Electroencephalogram Coherence in Individuals With ‎Autism: A Meta-analysis

Introduction: Many theories have been proposed about the etiology of autism. One is related to brain connectivity in patients with autism. Several studies have reported brain connectivity changes in autism disease. This study was performed on Electroencephalogram (EEG) studies that evaluated patients with autism, using functional brain connectivity, and compared them with typically-developing i...

متن کامل

Evaluation of Model-Based Methods in Estimating Dynamic Functional Connectivity of Brain Regions

Today, neuroscientists are interested in discovering human brain functions through brain networks. In this regard, the evaluation of dynamic changes in functional connectivity of the brain regions by using functional magnetic resonance imaging data has attracted their attention. In this paper, we focus on two model-based approaches, called the exponential weighted moving average model and the d...

متن کامل

Diminished Posterior Precuneus Connectivity with the Default Mode Network Differentiates Normal Aging from Alzheimer's Disease

Both normal aging and Alzheimer's disease (AD) have been associated with a reduction in functional brain connectivity. It is unknown how connectivity patterns due to aging and AD compare. Here, we investigate functional brain connectivity in 12 young adults (mean age 22.8 ± 2.8), 12 older adults (mean age 73.1 ± 5.2) and 12 AD patients (mean age 74.0 ± 5.2; mean MMSE 22.3 ± 2.5). Participants w...

متن کامل

Identification of mild cognitive impairment disease using brain functional connectivity and graph analysis in fMRI data

Background: Early diagnosis of patients in the early stages of Alzheimer's, known as mild cognitive impairment, is of great importance in the treatment of this disease. If a patient can be diagnosed at this stage, it is possible to treat or delay Alzheimer's disease. Resting-state functional magnetic resonance imaging (fMRI) is very common in the process of diagnosing Alzheimer's disease. In th...

متن کامل

Brain Functional Connectivity Changes During Learning of Time Discrimination

The human brain is a complex system consist of connected nerve cells that adapts with and learn from the environment by changing its regional activities. Synchrony between these regional activities called functional network changes during the life, and with learning of new skills. Time perception and interval discrimination are among the most necessary skills for the human being to perceive mot...

متن کامل

Depth of anesthesia estimation based on EEG signal using brain effective connectivity between frontal and temporal regions

Background: Ensuring adequate depth of anesthesia during surgery is essential for anesthesiologists to prevent the occurrence of unwanted alertness during surgery or failure to return to consciousness. Since the purpose of using anesthetics is to affect the central nervous system, brain signal processing such as electroencephalography (EEG) can be used to predict different levels of anesthesia....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013